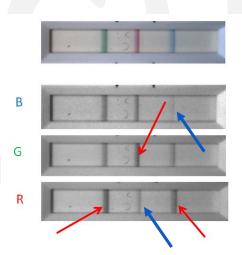
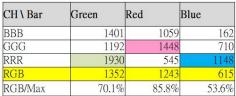
Application Note

[NOTE] Maximize Intensity Value by Selecting Test Images' Color in "Profile Wizard"


[AN] RTV-2023-0130-001

PACIFICIMAGE


Application:

Colorimetric lateral flow test is one of a handful of diagnostic technologies that can be taken out of the laboratory for POCT without any equipment or technique. Despite its convenience, it's always a challenge to substantially enhance detection sensitivity.

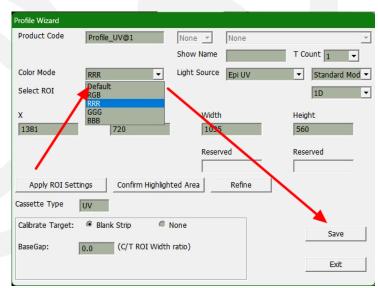
One of the functions in the software of our lateral flow test(LFT) development tool is called "Color Mode". It allows users to set up the image's color to get the thickest C/T line images. This feature is a great help for people developing LFTs with higher sensitivity.

- 1. As shown in the figure on the right, the strip has 3 different band colors.
- 2. By choosing the appropriate color mode the image of the band can be enhanced; hence stronger signal and higher value. (red arrow.) On the other hand, choosing the wrong color mode makes the band dull. (blue arrow).

3. Generally speaking, when the band color is green or blue, choosing RRR is recommended; when the band color is red, choosing GGG is recommended.

Product:

RapidScan_Lateral Flow Readers Pro, Rapid Test View(RTV), and Rapid Test View_Ethernet Software (ERTV)


Introduction:

- 1. Choosing the most suitable color mode enhances the images.
- 2. The mean value measurement tool helps users find the most suitable color for the colorimetric lateral flow tests and also shortens the time for debugging the reader's parameters.

Steps:

1. Choose the color of the test images:

After the analysis is completed, go to <u>Profile Wizard</u> and then click on <u>Color Mode</u> to modify the color of the test images, then click "save". As shown below:

2. Check mean value:

A. User can check the mean value in the **<u>Profile Wizard</u>** to determine whether the right color mode has been chosen.

B. Crop an area in the middle of the band, then the mean value will appear above the image, as shown below:

Mean R:174.1 G:132.3 B:139.4

Example:

1. Experimental content:

control variable							
Test sample	FluB(T1)						
concentration	1000/4 ⁿ ng/ml						
	(n=0~5)						
manipulative variable							
Color Mode setting in	Color Mode Test -RRR						
Profile Wizard	Color Mode Test -GGG						
	Color Mode Test -BBB						
Strain variable							
T value changes with Color	Mode setting						

For the video of the whole experiment operation process, please refer to 5. Conclusion

- 2. Measure band mean value & background mean value (RGB):
 - A. Refer to <u>"Steps"</u> on page 2, then record each mean value.
 - B. Crop an area of the membrane. Switch each color mode and record the mean value. As shown in the figure below:

Mean value of the T Band

Mean value of the BackGround

- 3. Compare the mean value's difference between the band and the background. (RRR/GGG/BBB)
 - A. Mean value data:

	T Band	Back Ground	Mean Value	
Color Mode Setting	Mean Value	Mean Value	difference	
RRR	184.6	190		6.6
GGG	154.2	192.5		37.8
BBB	161.6	191		29.5

B. As can be seen from the above figure, there is a large difference between GGG's band and background; hence setting the color mode to GGG is recommended.

4. *Verify:*

Use <u>Batch Test</u> ([Application Note] Data backup, data recovery and adjustment after analysis (RTV-2022-1229-001)), and set the color mode to RRR/GGG/BBB respectively, then do the analysis. GGG gets the best results in general.

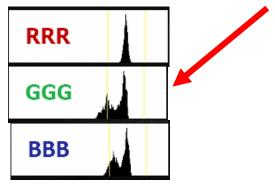
Γ1) RRR			•	GGG		ВВВ				
T1		T1 value difference	e		T1	T1 value difference	T1			:
	17				11		10			
	11		7	-6	35	24	25			15
	20		T	9	127	92	90			65
	81		-	61	330	203	258			168
1	07		1	26	588	258	462			204
2	48		14	41	1424	836	1134			672
	T1	T1 17 11 20 81 107	T1 T1 value difference 17	T1	T1 T1 value difference	T1	T1 T1 value difference T1 T1 value difference 17 11 11 -6 35 24 20 9 127 92 81 61 330 203 107 26 588 258	T1 T1 value difference T1 T1 value difference T1 17 11 10 11 -6 35 24 25 20 9 127 92 90 81 61 330 203 258 107 26 588 258 462	T1 T1 value difference T1 T1 value difference T1 T1 value difference 17 11 10 11 10 11 20 9 127 92 90 81 61 330 203 258 107 26 588 258 462	T1 T1 value difference T1 T1 value difference T1 T1 value difference 17 11 10 11 10 11 20 9 127 92 90 81 61 330 203 258 107 26 588 258 462

Choosing GGG makes the biggest mean value difference

5. Conclusion:

A. Check the mean value to determine which color mode is more suitable for the test kits. For the operation video, please refer to the link below:

https://drive.google.com/file/d/1XGEX6yJjn7cCvmczCvWjmd3GpHRx8c8R/view?usp=share link


B. Use the Batch Test function for insurance. For the operation video, please refer to the link below:

https://drive.google.com/file/d/14l9ZpeLJ80R815jc9EmZoxOfQFOoVzJe/view?usp=share_lin_k

Extended Application:

Users can also check the <u>histogram</u>. First, crop the area containing both band and background switching between each color mode. When the wave on the histogram is wider more suitable the color mode is.

